A working guide to process equipment 3. ed
- نوع فایل : کتاب
- زبان : انگلیسی
- مؤلف : Norman P Lieberman; Elizabeth T Lieberman
- ناشر : New York : McGraw-Hill
- چاپ و سال / کشور: 2008
- شابک / ISBN : 9780071640961
Description
Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Preface to Third Edition . . . . . . . . . . . . . . . . . . . . . . . xix Preface to Second Edition . . . . . . . . . . . . . . . . . . . . . . xxi Preface to First Edition . . . . . . . . . . . . . . . . . . . . . . . . xxiii Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix 1 Process Equipment Fundamentals . . . . . . . . . . . . . . 1 1.1 Frictional Losses . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Density Difference Induces Flow . . . . . . . . . 3 1.3 Natural Thermosyphon Circulation . . . . . . . 3 1.4 Reducing Hydrocarbon Partial Pressure . . . 4 1.5 Corrosion at Home . . . . . . . . . . . . . . . . . . . . . 5 1.6 What I Know . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.7 Distillation: The First Application . . . . . . . . 8 1.8 Origin of Refl ux . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Basic Terms and Conditions . . . . . . . . . . . . . . . . . . . 13 3 How Trays Work: Flooding . . . . . . . . . . . . . . . . . . . . 23 Downcomer Backup 3.1 Tray Effi ciency . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Downcomer Backup . . . . . . . . . . . . . . . . . . . . 25 3.3 Downcomer Clearance . . . . . . . . . . . . . . . . . . 26 3.4 Vapor-Flow Pressure Drop . . . . . . . . . . . . . . 29 3.5 Jet Flood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.6 Incipient Flood . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.7 Tower Pressure Drop and Flooding . . . . . . . 34 4 How Trays Work: Dumping . . . . . . . . . . . . . . . . . . . . 37 Weeping through Tray Decks 4.1 Tray Pressure Drop . . . . . . . . . . . . . . . . . . . . . 38 4.2 Other Causes of Tray Ineffi ciency . . . . . . . . . 41 4.3 Bubble-Cap Trays . . . . . . . . . . . . . . . . . . . . . . 43 4.4 New High Capacity Trays . . . . . . . . . . . . . . . 45 5 Why Control Tower Pressure . . . . . . . . . . . . . . . . . . 47 Options for Optimizing Tower Operating Pressure 5.1 Selecting an Optimum Tower Pressure . . . . 48 5.2 Raising the Tower Pressure Target . . . . . . . . 49 vii For more information about this title, click here 5.3 Lowering the Tower Pressure . . . . . . . . . . . . 50 5.4 The Phase Rule in Distillation . . . . . . . . . . . . 54 6 What Drives Distillation Towers . . . . . . . . . . . . . . . 57 Reboiler Function 6.1 The Reboiler . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2 Heat-Balance Calculations . . . . . . . . . . . . . . . 59 7 How Reboilers Work . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Thermosyphon, Gravity Feed, and Forced 7.1 Thermosyphon Reboilers . . . . . . . . . . . . . . . . 68 7.2 Forced-Circulation Reboilers . . . . . . . . . . . . . 74 7.3 Kettle Reboilers . . . . . . . . . . . . . . . . . . . . . . . . 75 7.4 Don’t Forget Fouling . . . . . . . . . . . . . . . . . . . 77 8 Inspecting Tower Internals . . . . . . . . . . . . . . . . . . . . 79 8.1 Tray Deck Levelness . . . . . . . . . . . . . . . . . . . . 79 8.2 Loss of Downcomer Seal Due to Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.3 Effect of Missing Caps . . . . . . . . . . . . . . . . . . 81 8.4 Repairing Loose Tray Panels . . . . . . . . . . . . . 81 8.5 Improper Downcomer Clearance . . . . . . . . . 81 8.6 Inlet Weirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.7 Seal Pans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.8 Drain Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.9 Vortex Breakers . . . . . . . . . . . . . . . . . . . . . . . . 84 8.10 Chimney Tray Leakage . . . . . . . . . . . . . . . . . . 84 8.11 Shear Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8.12 Bubble-Cap Trays . . . . . . . . . . . . . . . . . . . . . . 85 8.13 Final Inspection . . . . . . . . . . . . . . . . . . . . . . . . 86 8.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9 How Instruments Work . . . . . . . . . . . . . . . . . . . . . . . 89 Levels, Pressures, Flows, and Temperatures 9.1 Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.2 Foam Affects Levels . . . . . . . . . . . . . . . . . . . . 94 9.3 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.4 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.5 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10 Packed Towers: Better than Trays? . . . . . . . . . . . . . . 105 Packed-Bed Vapor and Liquid Distribution 10.1 How Packed Towers Work . . . . . . . . . . . . . . 105 10.2 Maintaining Functional and Structural Effi ciency in Packed Towers . . . . . . . . . . . . . 111 10.3 Advantages of Packing vs. Trays . . . . . . . . . 117 viii C o n t e n t s C o n t e n t s ix 11 Steam and Condensate Systems . . . . . . . . . . . . . . . . 119 Water Hammer and Condensate Backup Steam-Side Reboiler Control 11.1 Steam Reboilers . . . . . . . . . . . . . . . . . . . . . . . . 119 11.2 Condensing Heat-Transfer Rates . . . . . . . . . 121 11.3 Maintaining System Effi ciency . . . . . . . . . . . 124 11.4 Carbonic Acid Corrosion . . . . . . . . . . . . . . . . 127 11.5 Condensate Collection Systems . . . . . . . . . . 128 11.6 Deaerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 11.7 Surface Condensers . . . . . . . . . . . . . . . . . . . . . 133 12 Bubble Point and Dew Point . . . . . . . . . . . . . . . . . . . 137 Equilibrium Concepts in Vapor-Liquid Mixtures 12.1 Bubble Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 12.2 Dew Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 13 Steam Strippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Source of Latent Heat of Vaporization 13.1 Heat of Evaporation . . . . . . . . . . . . . . . . . . . . 145 13.2 Stripper Effi ciency . . . . . . . . . . . . . . . . . . . . . . 147 14 Draw-Off Nozzle Hydraulics . . . . . . . . . . . . . . . . . . 155 Nozzle Cavitation Due to Lack of Hydrostatic Head 14.1 Nozzle Exit Loss . . . . . . . . . . . . . . . . . . . . . . . 155 14.2 Critical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 14.3 Maintaining Nozzle Effi ciency . . . . . . . . . . . 159 14.4 Overcoming Nozzle Exit Loss Limits . . . . . . 163 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 15 Pumparounds and Tower Heat Flows . . . . . . . . . . . 167 Closing the Tower Enthalpy Balance 15.1 The Pumparound . . . . . . . . . . . . . . . . . . . . . . 167 15.2 Vapor Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 15.3 Fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . 175 16 Condensers and Tower Pressure Control . . . . . . . . 177 Hot-Vapor Bypass: Flooded Condenser Control 16.1 Subcooling, Vapor Binding, and Condensation . . . . . . . . . . . . . . . . . . . . . . 178 16.2 Pressure Control . . . . . . . . . . . . . . . . . . . . . . . 184 x C o n t e n t s 17 Air Coolers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Fin-Fan Coolers 17.1 Fin Fouling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 17.2 Fan Discharge Pressure . . . . . . . . . . . . . . . . . 195 17.3 Effect of Reduced Airfl ow . . . . . . . . . . . . . . . 196 17.4 Adjustments and Corrections to Improve Cooling . . . . . . . . . . . . . . . . . . . . . 197 17.5 Designing for Effi ciency . . . . . . . . . . . . . . . . . 198 18 Deaerators and Steam Systems . . . . . . . . . . . . . . . . . 205 Generating Steam in Boilers and BFW Preparation 18.1 Boiler Feedwater . . . . . . . . . . . . . . . . . . . . . . . 206 18.2 Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 18.3 Convective Section Waste-Heat Steam Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 19 Vacuum Systems: Steam Jet Ejectors . . . . . . . . . . . . 217 Steam Jet Ejectors 19.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . 217 19.2 Converging and Diverging Compression . . 219 19.3 Calculations, Performance Curves, and Other Measurements in Jet Systems . . . . . . . 220 19.4 Optimum Vacuum Tower-Top Temperature 232 19.5 Measurement of a Deep Vacuum without Mercury . . . . . . . . . . . . . . . . . . . . . . . 233 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 20 Steam Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Use of Horsepower Valves and Correct Speed Control 20.1 Principle of Operation and Calculations . . . 235 20.2 Selecting Optimum Turbine Speed . . . . . . . . 241 21 Surface Condensers . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 The Condensing Steam Turbine 21.1 The Second Law of Thermodynamics . . . . . 248 21.2 Surface Condenser Problems . . . . . . . . . . . . . 253 21.3 Surface Condenser Heat-Transfer Coeffi cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 22 Shell-and-Tube Heat Exchangers . . . . . . . . . . . . . . . 259 Heat-Transfer Fouling Resistance 22.1 Allowing for Thermal Expansion . . . . . . . . . 259 22.2 Heat-Transfer Effi ciency . . . . . . . . . . . . . . . . . 268 C o n t e n t s xi 22.3 Exchanger Cleaning . . . . . . . . . . . . . . . . . . . . 271 22.4 Mechanical Design for Good Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 271 22.5 Importance of Shell- Side Cross- Flow . . . . . . 277 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 23 Heat Exchanger Innovations . . . . . . . . . . . . . . . . . . . 279 23.1 Smooth High Alloy Tubes . . . . . . . . . . . . . . . 280 23.2 Low Finned Tubes . . . . . . . . . . . . . . . . . . . . . . 280 23.3 Sintered Metal Tubes . . . . . . . . . . . . . . . . . . . 280 23.4 Spiral Heat Exchanger . . . . . . . . . . . . . . . . . . 281 23.5 Tube Inserts . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 23.6 Twisted Tubes and Twisted Tube Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 23.7 Helical Tube Support Baffl es . . . . . . . . . . . . . 289 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 24 Fired Heaters: Fire- and Flue-Gas Side . . . . . . . . . . 291 Draft and Afterburn; Optimizing Excess Air 24.1 Effect of Reduced Air Flow . . . . . . . . . . . . . . 293 24.2 Absolute Combustion . . . . . . . . . . . . . . . . . . . 294 24.3 Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 24.4 Air Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 24.5 Effi cient Air/Fuel Mixing . . . . . . . . . . . . . . . 307 24.6 Optimizing Excess Air . . . . . . . . . . . . . . . . . . 308 24.7 Air Preheating, Lighting Burners, and Heat Balancing . . . . . . . . . . . . . . . . . . . . . 309 25 Fired Heaters: Process Side . . . . . . . . . . . . . . . . . . . . 315 Coking Furnace Tubes and Tube Failures 25.1 Process Duty versus Heat Liberation . . . . . . 315 25.2 Heater Tube Failures . . . . . . . . . . . . . . . . . . . . 321 25.3 Flow in Heater Tubes . . . . . . . . . . . . . . . . . . . 326 25.4 Low-NOx Burners . . . . . . . . . . . . . . . . . . . . . . 327 25.5 Tube Fire-Side Heaters . . . . . . . . . . . . . . . . . . 328 26 Refrigeration Systems . . . . . . . . . . . . . . . . . . . . . . . . 331 An Introduction to Centrifugal Compressors 26.1 Refrigerant Receiver . . . . . . . . . . . . . . . . . . . . 333 26.2 Evaporator Temperature Control . . . . . . . . . 334 26.3 Compressor and Condenser Operation . . . . 335 26.4 Refrigerant Composition . . . . . . . . . . . . . . . . 337 27 Cooling Water Systems . . . . . . . . . . . . . . . . . . . . . . . 339 27.1 Locating Exchanger Tube Leaks . . . . . . . . . . 340 27.2 Tube-Side Fouling . . . . . . . . . . . . . . . . . . . . . . 340 xii C o n t e n t s 27.3 Changing Tube-Side Passes . . . . . . . . . . . . . . 340 27.4 Cooling Tower pH Control . . . . . . . . . . . . . . 342 27.5 Wooden Cooling Towers . . . . . . . . . . . . . . . . 342 27.6 Back-Flushing and Air Rumbling . . . . . . . . . 343 27.7 Acid Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 343 27.8 Increasing Water Flow . . . . . . . . . . . . . . . . . . 343 27.9 Piping Pressure Losses . . . . . . . . . . . . . . . . . . 344 27.10 Cooling Tower Effi ciency . . . . . . . . . . . . . . . . 344 27.11 Wet Bulb Temperature . . . . . . . . . . . . . . . . . . 346 28 Catalytic Effects: Equilibrium and Kinetics . . . . . . 349 28.1 Kinetics vs. Equilibrium . . . . . . . . . . . . . . . . . 349 28.2 Temperature vs. Time . . . . . . . . . . . . . . . . . . . 350 28.3 Purpose of a Catalyst . . . . . . . . . . . . . . . . . . . 351 28.4 Lessons from Lithuania . . . . . . . . . . . . . . . . . 352 28.5 Zero Order Reactions . . . . . . . . . . . . . . . . . . . 354 28.6 Runaway Reaction . . . . . . . . . . . . . . . . . . . . . 354 28.7 Common Chemical Plant and Refi nery Catalytic Processes . . . . . . . . . . . . . 355 29 Centrifugal Pumps: Fundamentals of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Head, Flow, and Pressure 29.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 29.2 Starting NPSH Requirement . . . . . . . . . . . . . 361 29.3 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 29.4 Pump Impeller . . . . . . . . . . . . . . . . . . . . . . . . . 370 29.5 Effect of Temperature on Pump Capacity . . . 372 30 Centrifugal Pumps: Driver Limits . . . . . . . . . . . . . . 373 Electric Motors and Steam Turbines 30.1 Electric Motors . . . . . . . . . . . . . . . . . . . . . . . . . 373 30.2 Steam Turbines . . . . . . . . . . . . . . . . . . . . . . . . 378 30.3 Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 31 Centrifugal Pumps: Suction Pressure Limits . . . . . 381 Cavitation and Net Positive Suction Head 31.1 Cavitation and Net Positive Suction Head . . . . . . . . . . . . . . . . . . . . . . . . . . 381 31.2 Subatmospheric Suction Pressure . . . . . . . . . 392 32 Control Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 32.1 Pumps and Control Valves . . . . . . . . . . . . . . 399 32.2 Operating on the Bad Part of the Curve . . . 400 32.3 Control Valve Position . . . . . . . . . . . . . . . . . . 401 C o n t e n t s xiii 32.4 Valve Position Dials . . . . . . . . . . . . . . . . . . . . 402 32.5 Air-to-Open Valves . . . . . . . . . . . . . . . . . . . . . 403 32.6 Saving Energy in Existing Hydraulic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 32.7 Control Valve Bypasses . . . . . . . . . . . . . . . . . 404 32.8 Plugged Control Valves . . . . . . . . . . . . . . . . . 404 33 Separators: Vapor-Hydrocarbon-Water . . . . . . . . . . 407 Liquid Settling Rates 33.1 Gravity Settling . . . . . . . . . . . . . . . . . . . . . . . . 407 33.2 Demisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 33.3 Entrainment Due to Foam . . . . . . . . . . . . . . . 411 33.4 Water-Hydrocarbon Separations . . . . . . . . . 413 33.5 Electrically Accelerated Water Coalescing . . . 415 33.6 Static Coalescers . . . . . . . . . . . . . . . . . . . . . . . 416 34 Gas Compression: The Basic Idea . . . . . . . . . . . . . . 419 The Second Law of Thermodynamics Made Easy 34.1 Relationship between Heat and Work . . . . . 419 34.2 Compression Work (Cp - Cv) . . . . . . . . . . . . . 422 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 35 Centrifugal Compressors and Surge . . . . . . . . . . . . 425 Overamping the Motor Driver 35.1 Centrifugal Compression and Surge . . . . . . 427 35.2 Compressor Effi ciency . . . . . . . . . . . . . . . . . . 432 36 Reciprocating Compressors . . . . . . . . . . . . . . . . . . . . 439 The Carnot Cycle; Use of Indicator Card 36.1 Theory of Reciprocating Compressor Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 36.2 The Carnot Cycle . . . . . . . . . . . . . . . . . . . . . . . 442 36.3 The Indicator Card . . . . . . . . . . . . . . . . . . . . . 443 36.4 Volumetric Compressor Effi ciency . . . . . . . . 445 36.5 Unloaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 36.6 Rod Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 448 36.7 Variable Molecular Weight . . . . . . . . . . . . . . 448 37 Compressor Effi ciency . . . . . . . . . . . . . . . . . . . . . . . . 451 Effect on Driver Load 37.1 Jet Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 37.2 Controlling Vibration and Temperature Rise . . . . . . . . . . . . . . . . . . . . . . 452 37.3 Relative Effi ciency . . . . . . . . . . . . . . . . . . . . . . 454 37.4 Relative Work: External Pressure Losses . . . 456 xiv C o n t e n t s 38 Safety Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 Relief Valves, Corrosion, and Safety Trips 38.1 Relief-Valve Plugging . . . . . . . . . . . . . . . . . . . 460 38.2 Relieving to Atmosphere . . . . . . . . . . . . . . . . 461 38.3 Corrosion Monitoring . . . . . . . . . . . . . . . . . . . 462 38.4 Alarms and Trips . . . . . . . . . . . . . . . . . . . . . . . 464 38.5 Autoignition of Hydrocarbons . . . . . . . . . . . 466 38.6 Paper Gaskets . . . . . . . . . . . . . . . . . . . . . . . . . 468 38.7 Calculating Heats of Reaction . . . . . . . . . . . . 468 38.8 Hot Water Explodes Out of Manway . . . . . . 469 39 Corrosion—Process Units . . . . . . . . . . . . . . . . . . . . . 471 39.1 Closer to Home . . . . . . . . . . . . . . . . . . . . . . . . 471 39.2 Erosive Velocities . . . . . . . . . . . . . . . . . . . . . . . 472 39.3 Mixed Phase Flow . . . . . . . . . . . . . . . . . . . . . . 472 39.4 Carbonate Corrosion . . . . . . . . . . . . . . . . . . . . 473 39.5 Napthenic Acid Attack . . . . . . . . . . . . . . . . . . 473 39.6 A Short History of Corrosion . . . . . . . . . . . . . 473 39.7 Corrosion—Fired Heaters . . . . . . . . . . . . . . . 481 39.8 Oil-Fired Heaters . . . . . . . . . . . . . . . . . . . . . . . 484 39.9 Finned-Tube Corrosion . . . . . . . . . . . . . . . . . . 484 39.10 Field Identifi cation of Piping Metallurgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 40 Fluid Flow in Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Basic Ideas to Evaluate Newtonian and Non-Newtonian Flow 40.1 Field Engineer’s Method for Estimating Pipe Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 40.2 Field Pressure Drop Survey . . . . . . . . . . . . . . 488 40.3 Line Sizing for Low-Viscosity and Turbulent Flow . . . . . . . . . . . . . . . . . . . . 491 40.4 Frictional Pressure Loss in Rough and Smooth Pipe . . . . . . . . . . . . . . . . . . . . . . . 499 40.5 Special Case for Laminar Flow . . . . . . . . . . . 502 40.6 Smooth Pipes and Turbulent Flow . . . . . . . . 503 40.7 Very Rough Pipes and Very Turbulent Flow . . 503 40.8 Non-Newtonian Fluids . . . . . . . . . . . . . . . . . 503 40.9 Some Types of Flow Behavior . . . . . . . . . . . . 504 40.10 Viscoelastic Fluids . . . . . . . . . . . . . . . . . . . . . . 508 40.11 Identifying the Type of Flow Behavior . . . . . 509 40.12 Apparent and Effective Viscosityof Non-newtonian Liquids . . . . . . . . . . . . . . . . . 509 40.13 The Power Law or Ostwald de Waele Model . . . . . . . . . . . . . . . . . . . . . . . . . . 510 C o n t e n t s xv 40.14 Generalized Reynolds Numbers . . . . . . . . . . 513 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 41 Super-Fractionation Separation Stage . . . . . . . . . . . 517 41.1 My First Encounter with Super-Fractionation . . . . . . . . . . . . . . . . . . . . 517 41.2 Kettle Reboiler . . . . . . . . . . . . . . . . . . . . . . . . . 522 41.3 Partial Condenser . . . . . . . . . . . . . . . . . . . . . . 522 41.4 Side Reboilers and Intercoolers . . . . . . . . . . . 526 42 Computer Modeling and Control . . . . . . . . . . . . . . . 527 42.1 Modeling a Propane-Propylene Splitter . . . 527 42.2 Computer Control . . . . . . . . . . . . . . . . . . . . . . 531 42.3 Material Balance Problems in Computer Modeling . . . . . . . . . . . . . . . . . . . . 532 43 Field Troubleshooting Process Problems . . . . . . . . 535 43.1 De-ethanizer Flooding . . . . . . . . . . . . . . . . . . 535 43.2 The Elements of Troubleshooting . . . . . . . . . 537 43.3 Field Calculations . . . . . . . . . . . . . . . . . . . . . . 538 43.4 Troubleshooting Tools—Your Wrench . . . . . 539 43.5 Field Measurements . . . . . . . . . . . . . . . . . . . . 540 43.6 Troubleshooting Methods . . . . . . . . . . . . . . . 544 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559