Inorganic chemistry : an industrial and environmental perspective
- نوع فایل : کتاب
- زبان : انگلیسی
- مؤلف : Thomas Wilson Swaddle; T W Swaddle
- ناشر : San Diego [etc.] : Academic Press, cop.
- چاپ و سال / کشور: 1997
- شابک / ISBN : 9780126785500
Description
1 Importance of Inorganic Chemistry 1 1.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Occurrence and Uses of the Commonest Elements . . . . . . 5 2 Chemical Energetics 11 2.1 Kinetics and Thermodynamics . . . . . . . . . . . . . . . . 11 2.2 Activities in Electrolyte Solutions . . . . . . . . . . . . . . . 12 2.3 Equilibrium and Energy . . . . . . . . . . . . . . . . . . . . 14 2.4 Temperature and Pressure Effects on Equilibrium . . . . . . 18 2.4.1 Temperature Effects . . . . . . . . . . . . . . . . . . 18 2.4.2 Pressure Effects . . . . . . . . . . . . . . . . . . . . . 18 2.4.3 Hydrothermal Chemistry . . . . . . . . . . . . . . . 20 2.5 Chemical Kinetics: Basic Principles . . . . . . . . . . . . . . 23 2.5.2 Temperature Effects on Rates . . . . . . . . . . . . . 26 2.5.3 Pressure Effects on Rates . . . . . . . . . . . . . . . 26 2.6 Ionization Potential and Electron Affinity . . . . . . . . . . 27 2.7 Electronegativity and Bond Energies . . . . . . . . . . . . . 29 2.8 Electronegativity and Chemical Properties . . . . . . . . . . 32 2.9 Hard and Soft Acids and Bases . . . . . . . . . . . . . . . . 34 2.9.1 Principle of Maximum Hardness . . . . . . . . . . . 35 2.11 Explosives and Propellants . . . . . . . . . . . . . . . . . . 37 2.11.1 Nitrogen-Containing Explosives . . . . . . . . . . . . 38 2.11.2 Ammonium Nitrate as an Explosive . . . . . . . . . 39 2.11.3 Initiators . . . . . . . . . . . . . . . . . . . . . . . . 41 2.11.4 Other Explosives and Propellants . . . . . . . . . . . 41 2.5.1 Relation of Rate Equation to Mechanism . . . . . . 23 2.10 Multiple Bonding and Its Chemical Consequences . . . . . . 36 vii viii Contents 3 Catenation: Inorganic Macromolecules 3.1 Factors Favoring Catenation . . . . . . . . . . . . . . . . . . 3.2 Homocatenation of Carbon . . . . . . . . . . . . . . . . . . 3.2.1 Diamond and Graphite . . . . . . . . . . . . . . . . 3.2.2 Fullerenes and Carbon Nanotubes . . . . . . . . . . 3.3 Boron Nitride . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Homocatenation of Sulfur . . . . . . . . . . . . . . . . . . . 3.5 Catenation of Silicon . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Silanes and Organosilanes . . . . . . . . . . . . . . . 3.5.2 Siloxanes and Organosiloxanes . . . . . . . . . . . . 3.6 Phosphazenes . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Crystalline Solids 4.1 Determination of Crystal Structure . . . . . . . . . . . . . . 4.2 Bonding in Solids . . . . . . . . . . . . . . . . . . . . . . . . 4.3 The Close Packing Concept . . . . . . . . . . . . . . . . . . 4.3.1 Structures of Metals . . . . . . . . . . . . . . . . . . 4.3.2 Metallic Glasses . . . . . . . . . . . . . . . . . . . . 4.4 Binary Ionic Solids: Common Structural Types . . . . . . . 4.5 Radius Ratio Rules . . . . . . . . . . . . . . . . . . . . . . . 4.6 Ionic Solids and Close Packing . . . . . . . . . . . . . . . . 4.6.1 Perovskites . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 Spinels . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.3 Layer Structures . . . . . . . . . . . . . . . . . . . . 4.7 Energetics of Ionic Compounds . . . . . . . . . . . . . . . . 4.7.i Lattice Energies . . . . . . . . . . . . . . . . . . . . 4.7.2 Predicting Stabilities of Ionic Compounds . . . . . . 5 The Defect Solid State 5.1 Inevitability of Crystal Defects . . . . . . . . . . . . . . . . 5.2 Main Types of Crystal Defects . . . . . . . . . . . . . . . . 5.3 Impurity Defects and Semiconduction . . . . . . . . . . . . 5.4 Nonstoichiometry . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Metal Oxides and Sulfides as Extrinsic Semiconductors . . . 5.6 Mechanism of Scaling of Metals . . . . . . . . . . . . . . . . 5.7 Interstitial Compounds . . . . . . . . . . . . . . . . . . . . . 5.7.1 Carbon Steels . . . . . . . . . . . . . . . . . . . . . . 5.7.2 Nitriding . . . . . . . . . . . . . . . . . . . . . . . . 51 51 52 52 56 58 59 60 60 61 63 69 69 71 74 76 78 79 83 85 85 86 88 88 88 91 95 95 96 99 100 102 103 108 110 111 Contents ix 6 Inorganic Solids as Heterogeneous Catalysts 115 6.1 Heterogeneous Catalysis . . . . . . . . . . . . . . . . . . . . 115 6.1.1 Physical Adsorption and Chemisorption . . . . . . . 116 6.2 Transition Metals as Catalysts . . . . . . . . . . . . . . . . 119 6.4 Catalysis by Stoichiometric Oxides . . . . . . . . . . . . . . 123 6.4.1 Acidic Oxides . . . . . . . . . . . . . . . . . . . . . . 123 6.4.2 Basic Oxides . . . . . . . . . . . . . . . . . . . . . . 123 6.5 Photocatalysis by Inorganic Solids . . . . . . . . . . . . . . 124 6.5.1 Photocatalytic Splitting of Water . . . . . . . . . . . 124 6.5.2 Photocatalysis and Environmental Protection . . . . 125 6.3 Defect Oxides and Sulfides in Catalysis . . . . . . . . . . . 121 7 Silicates. Aluminates. and Phosphates 129 7.1 Silicate Structures . . . . . . . . . . . . . . . . . . . . . . . 129 7.1.1 Asbestos: Uses and Hazards . . . . . . . . . . . . . . 132 7.2 Aluminosilicates . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.3 Zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.3.1 Zeolites as Cation Exchangers . . . . . . . . . . . . . 137 7.3.2 Zeolites as Desiccants . . . . . . . . . . . . . . . . . 138 7.3.3 Zeolites as Solid Acid Catalysts . . . . . . . . . . . . 138 7.4 Clays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.5 Silica and Silicate Glasses . . . . . . . . . . . . . . . . . . . 142 7.5.1 Silicate Glasses . . . . . . . . . . . . . . . . . . . . . 144 7.6 Soluble Silicates and Aluminates . . . . . . . . . . . . . . . 145 7.7 Phosphates and Aluminophosphates . . . . . . . . . . . . . 147 7.7.1 Phosphate Fibers . . . . . . . . . . . . . . . . . . . . 148 7.7.2 Aluminophosphates . . . . . . . . . . . . . . . . . . 149 8 The Atmosphere and Atmospheric Pollution 153 8.1 Carbon Dioxide and Greenhouse Gases . . . . . . . . . . . . 153 8.1.1 Carbon Dioxide and the Greenhouse Effect . . . . . 153 8.1.2 Other Greenhouse Gases . . . . . . . . . . . . . . . . 157 8.1.3 Supercritical Carbon Dioxide . . . . . . . . . . . . . 157 8.1.4 Other Properties of Carbon Dioxide . . . . . . . . . 158 8.2 Carbon Monoxide . . . . . . . . . . . . . . . . . . . . . . . . 159 8.3 Ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.3.1 The Stratospheric Ozone Layer . . . . . . . . . . . . 161 8.3.2 Ozone as a Pollutant . . . . . . . . . . . . . . . . . . 163 8.4 Nitrogen Oxides . . . . . . . . . . . . . . . . . . . . . . . . 164 8.4.1 Nitrous Oxide . . . . . . . . . . . . . . . . . . . . . . 164 x Contents 8.4.2 Nitric Oxide and Nitrogen Dioxide . . . . . . . . . . 165 8.5 Sulfur Dioxide and Trioxide . . . . . . . . . . . . . . . . . . 168 9 Nitrogen. Phosphorus. and Potash in Agriculture 9.1 Natural Sources of Fixed Nitrogen . . . . . . . . . . . . . . 9.2 Direct Combination of Nitrogen and Oxygen . . . . . . . . 9.3 Ammonia Synthesis . . . . . . . . . . . . . . . . . . . . . . 9.4 Nitric Acid and Ammonium Nitrate . . . . . . . . . . . . . 9.5 Sulfates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7 Potash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 180 181 181 183 185 185 187 10 Sulfur and Sulfur Compounds 191 10.1 Elemental Sulfur . . . . . . . . . . . . . . . . . . . . . . . . 191 10.2 Sulfuric Acid . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10.3 Other Products from Elemental Sulfur 10.4 Sulfur Chemicals in the Pulp and Paper Industry . . . . . . . . . . . . . . . . . . 195 195 10.4.1 The Kraft Process . . . . . . . . . . . . . . . . . . . 197 10.4.2 The Sulfite Process . . . . . . . . . . . . . . . . . . . 199 10.4.3 Recycling Waste Paper . . . . . . . . . . . . . . . . 200 11 Alkalis and Related Products 11.1 Lime Burning . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Cement and Concrete . . . . . . . . . . . . . . . . . . . . 11.2.1 Portland Cement . . . . . . . . . . . . . . . . . . . 11.2.2 Concrete . . . . . . . . . . . . . . . . . . . . . . . 11.3 Soda Ash . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Caustic Soda: The Chloralkali Industry 11.4.1 Diaphragm Cell . . . . . . . . . . . . . . . . . . . . 11.4.2 Mercury Cell . . . . . . . . . . . . . . . . . . . . . 11.4.3 Future of the Alkali Industry . . . . . . . . . . . . . . . . . . . . . . 205 205 207 207 210 211 212 213 215 217 12 The Halogens 221 12.1 The Chlorine Controversy . . . . . . . . . . . . . . . . . . . 221 12.2 Oxides and Oxoacids of Chlorine . . . . . . . . . . . . . . . 223 12.3 Fluorine and Fluorine Compounds . . . . . . . . . . . . . . 226 12.3.1 Fluoride Ion and Dental Health . . . . . . . . . . . . 226 12.3.2 Fluorocarbons . . . . . . . . . . . . . . . . . . . . . 227 12.3.3 Chlorofluorocarbons . . . . . . . . . . . . . . . . . . 229 12.3.4 Fluorine and Nuclear Energy . . . . . . . . . . . . . 230 Contents xi 12.4 Bromine and Iodine . . . . . . . . . . . . . . . . . . . . . . 231 12.4.1 Extraction of Bromine . . . . . . . . . . . . . . . . . 231 12.4.2 Uses and Hazards of Bromine . . . . . . . . . . . . . 231 12.4.3 Iodine . . . . . . . . . . . . . . . . . . . . . . . . . . 232 13 Ions in Solution 237 13.1 Energetics of Solvation . . . . . . . . . . . . . . . . . . . . . 237 13.1.1 Born Theory of Solvation . . . . . . . . . . . . . . . 237 13.1.2 Limitations of the Born Theory . . . . . . . . . . . . 239 13.2 Metal Complexes . . . . . . . . . . . . . . . . . . . . . . . . 241 13.3 Chelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 13.4 Stability Constants . . . . . . . . . . . . . . . . . . . . . . . 249 13.5 Uses of Complexing Agents . . . . . . . . . . . . . . . . . . 250 13.5.1 Chelating Agents . . . . . . . . . . . . . . . . . . . . 250 13.5.2 Unidentate Complexing Agents . . . . . . . . . . . . 13.5.3 Photographic Chemistry . . . . . . . . . . . . . . . . 254 13.6 Hydrolysis of Aqueous Cations . . . . . . . . . . . . . . . . 256 252 14 Water Conditioning 263 14.1 Importance of Water Treatment . . . . . . . . . . . . . . . . 263 14.2 Suspended and Colloidal Matter . . . . . . . . . . . . . . . 264 14.3 Origin and Effects of Dissolved Solids . . . . . . . . . . . . 265 14.4 Treatment for Dissolved Solids . . . . . . . . . . . . . . . . 268 14.4.1 Removal of Inorganic Solutes . . . . . . . . . . . . . 268 14.4.2 Removal of Organic Solutes . . . . . . . . . . . . . . 275 14.5 Sewage Treatment . . . . . . . . . . . . . . . . . . . . . . . 277 14.6 Dissolved Gases . . . . . . . . . . . . . . . . . . . . . . . . . 278 14.7 Bacteria and Algae . . . . . . . . . . . . . . . . . . . . . . . 279 15 Oxidation and Reduction in Solution 285 15.1 Galvanic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 285 15.2 Manipulation and Use of Electrode Potentials . . . . . . . . 290 15.2.1 Example: Analysis of Brass . . . . . . . . . . . . . . 290 15.2.2 Example: Oxidation States of Manganese . . . . . . 291 15.3 Pourbaix (Eh-pH) Diagrams . . . . . . . . . . . . . . . . . . 295 15.4 Kinetic Aspects of Electrochemistry: Overpotential . . . . . 301 15.5 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 15.5.1 Hydrogen as a Fuel . . . . . . . . . . . . . . . . . . . 309 15.5.2 General Principles of Fuel Cells . . . . . . . . . . . . 310 15.5.3 Commercial Fuel Cells . . . . . . . . . . . . . . . . . 313 xii Contents 15.6 Electrochemical Energy Storage Cells . . . . . . . . . . . . . 15.7 Electrolysis. Electroplating. and Electroforming . . . . . . . 315 319 16 Corrosion of Metals 327 16.1 Bimetallic Corrosion . . . . . . . . . . . . . . . . . . . . . . 327 16.1.1 Corrosion by Oxygen . . . . . . . . . . . . . . . . . . 329 16.1.2 Bimetallic Corrosion of Iron . . . . . . . . . . . . . . 330 16.2 Single-Metal Corrosion . . . . . . . . . . . . . . . . . . . . . 331 16.3 Role of Oxide Films . . . . . . . . . . . . . . . . . . . . . . 334 16.4 Crevice and Intergranular Corrosion . . . . . . . . . . . . . 336 16.5 Corrosion by Acids and with Complexing Agents 16.6 Role of Overpotential in Corrosion 16.7 Control of Corrosion . . . . . . . . . . . . . . . . . . . . . . 347 16.7.1 Cathodic Protection . . . . . . . . . . . . . . . . . . 347 16.7.2 Protective Coatings . . . . . . . . . . . . . . . . . . 347 16.7.3 Corrosion Inhibitors . . . . . . . . . . . . . . . . . . 348 16.7.4 Atmospheric Corrosion . . . . . . . . . . . . . . . . . 351 16.7.5 Corrosion-Resistant Metals . . . . . . . . . . . . . . 352 16.8 Stainless Steels . . . . . . . . . . . . . . . . . . . . . . . . . 353 . . . . . . 339 . . . . . . . . . . . . . . 342 17 Extractive Metallurgy 357 17.1 Gravity and Flotation Methods of Ore Concentration . . . . 17.2 Hydrometallurgical Concentration and Separation . . . . . 358 17.2.1 Cyanide Leaching . . . . . . . . . . . . . . . . . . . . 358 17.2.2 Ammonia Leaching . . . . . . . . . . . . . . . . . . . 359 17.2.3 Acid and Microbial Leach Processes . . . . . . . . . 360 17.2.4 Alkali Leaching . . . . . . . . . . . . . . . . . . . . . 361 17.3 Solvent Extraction and Ion-Exchange Separations . . . . . . 17.3.1 Solvent Extraction . . . . . . . . . . . . . . . . . . . 362 17.3.2 Ion-Exchange Separations . . . . . . . . . . . . . . . 366 17.4 Separations Utilizing Special Properties . . . . . . . . . . . 367 17.5 Electrolytic Reduction of Concentrate . . . . . . . . . . . . 368 17.7 Pyrometallurgy of Oxides . . . . . . . . . . . . . . . . . . . 375 17.7.1 Use of the Ellingham Diagram for Oxides . . . . . . 375 17.7.2 Iron Production . . . . . . . . . . . . . . . . . . . . 377 17.7.3 Steelmaking . . . . . . . . . . . . . . . . . . . . . . . 379 17.8.1 Titanium and Titanium Dioxide . . . . . . . . . . . 382 17.8.2 Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . 384 357 361 17.6 Chemical Reduction of Concentrate . . . . . . . . . . . . . . 370 17.8 Pyrometallurgy of Halides and Sulfides . . . . . . . . . . . . 382 Contents xiii 17.8.3 Metal Sulfides . . . . . . . . . . . . . . . . . . . . . . 384 18 Organometallics 18.1 Alkyl Compounds of Some Main Group Metals . . . . . . . 18.1.1 Group 12 Organometallics . . . . . . . . . . . . . . . Organometallics of Groups 1 and 2 . . . . . . . . . . 18.1.3 Group 14 Organometallics . . . . . . . . . . . . . . . 18.2 Organotransition Metal Compounds . . . . . . . . . . . . . 18.2.1 Eighteen-Electron Rule . . . . . . . . . . . . . . . . 18.3.1 Homogeneous Hydrogenation . . . . . . . . . . . . . 18.3.2 Hydroformylation . . . . . . . . . . . . . . . . . . . . 18.3.3 The Wacker and Monsanto Processes . . . . . . . . . 18.4 Olefin Polymerization Catalysts . . . . . . . . . . . . . . . . 18.4.1 Ziegler-Natta Catalysts . . . . . . . . . . . . . . . . 18.4.2 Metallocene Polymerization Catalysts . . . . . . . . 18.1.2 18.3 Transition Metal Complexes as Homogeneous Catalysts . . 19 Some Newer Solid-state Technologies 19.1 Sol-Gel Science . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.1 Gels from Hydrolysis of Metal Aqua Ions . . . . . . 19.1.2 Gels from Hydrolysis of Alkoxides 19.1.3 Xerogels . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.4 Aerogels . . . . . . . . . . . . . . . . . . . . . . . . . 19.2 Materials for Electronics . . . . . . . . . . . . . . . . . . . . 19.2.1 Deposition of Thin Layers . . . . . . . . . . . . . . . 19.2.2 Some Simple Electronic Devices . . . . . . . . . . . . 19.2.3 Construction of Microelectronic Devices . . . . . . . . . . . . . . . . . 19.3.1 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3 Magnetic Materials and Superconductors 19.3.2 Superconductivity . . . . . . . . . . . . . . . . . . . Appendix A Useful Constants . . . . . . . . . . . . . . . . . . . . Appendix B The Chemical Elements: Standard Atomic Masses . Appendix C Chemical Thermodynamic Data . . . . . . . . . . . . Appendix D Standard Electrode Potentials for Aqueous Solutions Appendix E Nomenclature of Coordination Compounds . . . . . . Appendix F Ionic R.adii . . . . . . . . . . . . . . . . . . . . . . . .