The cognitive electrophysiology of mind and brain
- نوع فایل : کتاب
- زبان : انگلیسی
- مؤلف : Alberto Zani; Alice Mado Proverbio
- ناشر : Amsterdam ; Boston : Academic Press
- چاپ و سال / کشور: 2003
- شابک / ISBN : 9780127754215
Description
study, 318 description, 26–27 epilepsy study, 329–330 executive control regulation electrophysiology, 213–217 HIV/AIDS study, 328 multiple sclerosis study, 327 negative deflection effects, 30 Parkinson’s disease study, 312, 316 Movement-related activity, eventrelated potential studies cerebellar atrophy, 317–319 Parkinson’s disease, 312–313, 315 Müller, M. M., 261, 262 Multichannel recording, visual information processing evoked potentials, 75–78 magnetoencephalographic studies, 129–130 Multiple sclerosis event-related potential studies, 327–328 neurological symptoms, 368 Multisphere model, 18 Münte, T. F., 162, 319–321 Muscles, artifacts in EEG recordings, 388 Music perception, mismatch negativity studies, 347–349 N N1 color attention study, 299 epilepsy study, 329–330 HIV/AIDS study, 328 Huntington’s disease study, 319 progressive supranuclear palsy study, 320 spatial attention study, 247–248 visual stream development study, 226–230 N2 Alzheimer disease study, 310 amyotrophic lateral sclerosis study, 321 attentional visual processing to object features, 293, 295, 299 cerebellar atrophy study, 318 description, 26–27 epilepsy study, 329–330 executive control regulation electrophysiology, 213–217 HIV/AIDS study, 328 multiple sclerosis study, 327 negative deflection effects, 30 Parkinson’s disease study, 312, 316 N60, steady-state visual evoked potentials for attention, 264 N100 in language comprehension studies, 149 multiple sclerosis study, 327 N100m, 35 N140, 33 description, 33 steady-state visual evoked potentials for attention, 264 N170, face perception development study, 230–233 N200, face perception development study, 230 N278 cortical auditory potentials, 23 in language comprehension, 151–155 visual evoked potentials, 30, 289, 294, 300 N320, face perception development study, 233 N400 Alzheimer disease study, 311 aphasia study, 324–325 description, 26 epilepsy study, 331 in language comprehension studies, 151, 153, 159–161 in linguistic potentials, 32 Parkinson’s disease study, 317 N800, epilepsy study, 331 Näätänen, Risto, 24, 343–352 Naito, T., 112 Nakamura, M., 101 Narici, L., 114, 115 Nauta, W. J. H., 197 Nauta’s limbic set points, 197 Necker cube, 122 Negative deflection, motor potentials, 30 Negative difference in cortical auditory potentials, 24 in Parkinson’s disease, 316 Network view of neuroimaging, 43 Neural specificity theory, of attentional selection, 289 Neurochemical lesions drug protection, 364 neurotoxins, 364 Neurocognitive development, age and experience effects, 223–239 face perception development, 230–233 face processing across early school years, 231–233 in Williams syndrome, 233 infant face recognition, 231 language function neuroplasticity, 234–239 American Sign Language studies, 235–236 bilingual adult studies, 234 cerebral organization, 236–238 deaf adult studies, 234–235 influencing factors, 238–239 primary language acquisition effects, 236–238 overview, 223–224, 238–239 spatial attention, 228–230 auditory deprivation effects, 228 visual deprivation effects, 228–230 visual stream development, 224–228 Neuroimaging, see Electroencephalogram; Eventrelated potentials; Magnetoencephalography; Neuronal recordings Neurological disease, see specific diseases Neuromodulators, theta rhythm modulation, 211–213 Neuronal recordings, see also Electroencephalogram; Event-related potentials; Magnetoencephalography clinical applications, 363–364 deep intracerebral electrodes, 363–364 INDEX 431 Neuronal recordings, see also Electroencephalogram; Event-related potentials; Magnetoencephalography (continued) epidural electrodes, 363 subdural electrodes, 363 extracellular recordings, 361–362 high-density electromagnetic signals, 379–400 amplifiers, 379, 385–386 artifacts, 387–388 bipolar recordings, 383–387 electrodes, 379–383 caps, 380–381 impedance, 381 placement, 380 sites, 381–383 types, 380 event-related potential averaging, 388–390 monopolar recordings, 383–387 offline digital filtering, 389–390 online analog filters, 386–387 overview, 379 scalp topographic mapping, see Topographic mapping signal digitation rate, 387 volunteer recruitment, 398–400 intracellular recordings, 362 intracranial recordings, epilepsy study, 331 invasiveness, 424–425 laboratory set up, 374–376 local field potentials, 361 multichannel recording multiunit activities, 361 visual information processing studies, 75–78 overview, 42–43, 374 patch-clamp recordings, 362–363 reference electrodes common reference method, 383–387 dipole localization, 19–20 spatial resolution, 421–424 temporal resolution, 421–424 Neurophysiology cognitive electrophysiology description, 4–5 self-regulation, 213–217 evoked electrical brain activity, 72–75, 88–89 Neurosurgery invasive procedures, 360–361 noninvasive procedures, 361 stereotaxic neurosurgery, 359–361 Neurotoxins, lesion relationship, 364 Neurotransmitters, voltammetric measurement, 365–366 Neville, Helen J., 223–239 Newton, M. R., 327 Nielsen-Bohlman, L., 26 Nishitani, N., 112–113 Nobre, A. C., 188, 189 Novelty, executive function regulation electrophysiology, 214–215 Nunez, P. L., 13 Nyberg, Lars, 7, 41–65 Nyman, G., 128 O Oakley, M. T., 285 Object features, attentional visual processing, 273–301 anterior attentional system, 273–279 color, 298–301 feature-directed attention, 285–291 features conjunction, 292–298 frequency-based attentional selection, 291–292 neural systems, 274–280 object perception, 292–298 orientation-directed attention, 288–291 overview, 273–274, 301 posterior attentional system, 273–274, 279–280 primary visual area modulation, 280–285 space-based attentional selection, 291–292 spatial frequency-directed attention, 286–288, 292–298 Obsessive-compulsive disorder, error-related negativity relationship, 202 O’Donnell, R. D., 258 Oishi, M., 314 Ojemann, G., 128 Okada, Y., 99, 130 Okusa, T., 109 Old/new effects, in episodic retrieval description, 175–176 at frontal scalp sites, 183–186 left-parietal event-related potentials, 176–179 Ollo, C., 328, 329 Onofrj, M., 321 Ophthalmology, see Visual information processing Opiates, theta rhythm modulation, 211–213 Orban, G. A., 290 Orientation reflexive attentional orienting, 249–251 visual attention to object features, 288–291 Oscillatory behaviors, in visual system, magnetoencephalographic studies, 113–118 induced activity, 116–118 periodic stimulation, 114–116 Ostberg, O., 399 Osterhout, L., 155 Otmakhova, N. A., 210 Otten, L. J., 172, 175 P P0z, steady-state visual evoked potentials for attention, 268–269 P04, steady-state visual evoked potentials for attention, 268–269 P1 in visual evoked potentials, 30 visual stream development study, 225–226 P2 description, 27 Huntington’s disease study, 319 Parkinson’s disease study, 316 P3 Alzheimer disease study, 310–312 amyotrophic lateral sclerosis study, 321 cerebellar atrophy study, 318–319 epilepsy study, 329–330 HIV/AIDS study, 328–329 Huntington’s disease study, 319 multiple sclerosis study, 327 Parkinson’s disease study, 316 progressive supranuclear palsy study, 320 P3a, executive control regulation electrophysiology, 213–217 P3b executive control regulation electrophysiology, 213–217 visual selective attention to object features, 276–277 432 INDEX P50m, 35 P100 latencies, 406–407 steady-state visual evoked potentials for attention, 264 P150, in language comprehension studies, 149 P190 description, 33 visual selective attention to object features, 279 P200, multiple sclerosis study, 327 P250, epilepsy study, 331 P290, epilepsy study, 331 P300 attentional visual processing to object features, 293, 295, 299 in event-related potentials, 21, 24–26 P400, infant face recognition development study, 231 P600 description, 31–32 in language comprehension studies, 151–155, 162 Paller, K. A., 187, 188 Papez circuit, executive function regulation relationship, 206–207, 209 Paradoxical laterlization, 78 Parietal regions cross-function studies compared blocked paradigms, 55, 57–59 event-related paradigms, 56, 59–62 results, 49–50, 53 late centroparietal positivity, 31–32 left-parietal event-related potentials, old/new effects, 176–179 posterior parietal cortex, visual stream development, 225 Parkinson’s disease event-related potential studies, 312–317 executive control measures, 316 memory, 316–317 movement preparation after ambiguous imperative signals, 315 before imperative signals, 313–315 oddball tasks, 315–316 self-initiated movements, 313 neurological symptoms, 367–368 Parra, J., 114 Parvocellular visual pathways, attention effects, 265–268 Patch-clamp recordings, 362–363 Patterns pattern onset modality in visual evoked potentials, 29 processing patterns in language comprehension, 151–155 Patzwahl, D. R., 111 Pekkonen, E., 311, 350 Pelosi, L., 328 Perception, see also Attention activation stimulus, 44–53 evoked visual information processing study perceptual learning, 79–83 stereoscopic perception, 83–88 face perception magnetoencephalographic studies, 106–108 neurocognitive development age and experience effects, 230–233 face processing across early school years, 231–233 face processing in Williams syndrome, 233 infant face recognition, 231 language comprehension, 148–151 music perception, mismatch negativity studies, 347–349 object perception, 292–298 Petersen, S. E., 32 Petit, L., 128 Phillips, N. A., 32 Picton, T. W., 394 Pilgreen, K. L., 15 Plat, F. M., 315 Platz, T., 323 Polich, J., 214, 215, 216 Portin, K., 98, 103, 104 Positron emission tomography Alzheimer disease study, 310 anterior cingulate cortex study, 204 attention localization event-related potentials combined, 251–254 visual attention to object features, 290 invasiveness, 424–425 language comprehension study, 147, 157–158 language localization, 32 overview, 6–7, 41, 44, 54–56, 71 spatial resolution, 421–424 temporal resolution, 421–424 Posner, M. I., 246–248, 326 Posterior attentional system, visual information processing to object features, 273–274, 279–280 Posterior cingulate cortex, see also Anterior cingulate cortex function, 207 Posterior parietal cortex, visual stream development, 225 Praamstra, P., 314, 315 Prefrontal regions cross-function studies compared blocked paradigms, 55, 57–59 event-related paradigms, 56, 59–62 results, 46–48, 52–53 visual selective attention to object features, 275–279 Premotor positive in visual evoked potentials, 30 visual stream development study, 225–226 Previc, F. H., 287, 289 Principal component analysis component extraction, 412–414 description, 19, 412–418 examples, 414–415 physiological interpretation, 416–417 Probe technique, from eventrelated potentials, 21 Processing negativity in cortical auditory potentials, 23 in language comprehension, 151–155 in visual evoked potentials, 30, 289, 294, 300 Progressive supranuclear palsy event-related potential studies, 320 neurological symptoms, 368 Proverbio, Alice M., 3–11, 13–36, 80, 273–301, 359–366, 373–377, 379–400, 421–425 Puce, A., 329, 330 Pulvermüller, F., 314 Putative index of familiarity, in episodic retrieval, 179–182 R Radiation autoradiography, 364–365 linear accelerator irradiation, 361 Radio frequencies, artifacts in EEG recordings, 388 Raij, T., 122 Raile, A., 79 Raizada, R. D. S., 298 INDEX 433 Random-dot stereograms, evoked visual information processing study, 82–88 Ranganath, C., 59, 60, 64, 187, 188 Readiness potential, in motor potentials, 27 Recollection, 169, 177, 183 Recording methods, see Neuronal recordings; specific methods Recruitment, for brain wave recording studies, 398–400 Redgrave, P., 205, 206, 210 Reference electrode common reference method, 383–387 dipole localization, 19–20 Reference potential description, 27 Huntington’s disease study, 319 Parkinson’s disease study, 316 Reflexive attentional orienting, 249–251 Remember response episodic encoding, 174–175 familiarity effects, 179–180 Retinotopy, visual area identification using magnetoencephalography, 95–98 Revonsuo, A., 311, 312 Rif, J., 35 Ritter, W., 318 Robb, W. G. K., 190 Robertson, D., 33 Rodin, E., 329 Rogers, R. D., 189 Rosenberg, C., 319 Rösler, F., 417 Ruchkin, D. S., 328, 413 Rugg, M. D., 172, 175, 180, 182–184, 186, 188, 189, 190, 311, 330, 331 Rüsseler, J., 348 S Sachdev, P. S., 322 Salenius, S., 113, 114 Salmelin, R., 113, 114 Sams, M., 107 Sanquist, T. F., 176, 177 Sato, N., 103 Scabini, D., 216, 284 Scalp current density mapping, see also Electroencephalogram; Event-related potentials; Neuronal recordings; specific cognitive functions analytical methods, 403–418 applications, 417–418 components, 408–418 extraction, 412–414 physiological interpretation, 416–417 spatial components analysis, 414–415 overview, 403–408 rational, 404–408 description, 29, 390–393 electrodes, 379–383 caps, 380–381 impedance, 381 placement, 380 sites, 381–383 types, 380 evoked visual information processing study, 75–78, 81–82, 290 isoline maps, 384, 390–392 limitations, 393–395 primary language acquisition effects on cerebral organization, 236–238 stationary maps, 390 visual attention to object features, 290 Scheffers, M. K., 200 Schendan, H. E., 149 Schroeder, C. E., 290, 328 Schröger, E., 344 Seki, K., 100 Selection negativity cortical auditory potentials, 23 in language comprehension, 151–155 visual evoked potentials, 30, 289, 294, 300 Selective attention, see also Perception magnetoencephalographic studies, 118–120, 128–129 to object features, 276–277 top-down selection, 280 Self-regulation, of executive functions, 197–217 action regulation mechanisms, 205–209 affective modulation, 212–213 amplitude modulation, 211–212 corticolimbic integration, 208–209 dopamine effects, 205–206 electrophysiology, 213–214 executive control, 209 limbic theta, 209 models, 207–208 motivational control, 209–213 Papez circuit, 206–207, 209 prediction errors, 205–206 theta rhythm, 208–211 anterior cingulate cortex, 198–209 action monitoring, 199–202 action regulation model, 207–208 adaptation, 206–207 dopamine effects, 205–206 electrophysiology, 213–214 executive control, 199–202 Papez circuit, 206–207, 209 theta dynamics, 202–205 electrophysiological signs, 213–217 action regulation, 213–214 context updating, 215–216 distraction, 214–215 novelty, 214–215 overview, 197–198 Semantic differential technique, evoked visual information processing study, 80 Semantic retrieval, activation stimulus, 44–53 Sensory processes, see Perception; specific senses Sergent, J., 106 Sharing view of neuroimaging, 42 Sharpe, Helen, 169–191 Sheinberg, D. L., 106, 108 Shepard, R. N., 121 Shulman, G. L., 279, 284 Shultz, W., 205, 211 Signal digitation rate, for electroencephalograms, 387 Silberstein, R. B., 13, 258, 260 Singer, W., 127 Skin drilling, 380 Skrandies, Wolfgang, 71–89, 403–418 Smith, M. E., 174, 177, 330 Sokolov, A., 117 Somatosensory event-related fields, 36 Somatosensory evoked potentials, 33–34 Somers, D. C., 284 Sommer, W., 171, 172, 175 Source modeling, in magnetoencephalography, 127–128 Spatial attention attention to object features, 284 electrophysiological measures, 247–248 neurocognitive development, 228–230 434 INDEX auditory deprivation effects, 228 visual deprivation effects, 228–230 steady-state visual evoked potential relationship, 258–262 Spatial frequency magnetoencephalographic studies, 98–101 of a visual stimulus, 286–288, 292–298 Spatial resolution, overview, 421–424 Spatial vision, magnetoencephalographic studies, 102–104, 109–113 Speech, see Language Spinelli, D., 267, 326 Squire, L. R., 184 Srinivasan, R., 115, 380 Stam, C. J., 316 Starr, A., 323 Steady-state visual evoked potentials, attentional visual processing, 257–271 cognitive process relationship, 258 contrast response, 268–270 magno cellular pathways, 265–268 overview, 257–258, 270–271 parvocellular pathways, 265–268 phase effects, 262–265 spatial attention, 258–262 Stephen, J. M., 93–130 Stereoscopic perception, evoked visual information processing study, 83–88 Stereotaxic neurosurgery, 359–361 Sternberg, S., 312, 320, 324 Stromswold, K., 157 Subdivision view of neuroimaging, 42–43 Subsequent memory, episodic encoding, 170–171 Supek, S., 97, 98 Superconducting quantum interference devices, in magnetoencephalography, 395–398 Surgery, see Neurosurgery Sweating, artifacts in EEG recordings, 388 Swithenby, S. J., 107 Syntactic positive shift description, 31–32 in language comprehension studies, 151–155, 162 T Tachibana, H., 317, 318, 319 Talairach, J., 359 Tallon-Baudry, C., 116 Tanaka, K., 290 Taylor, C., 215 Taylor, M. J., 231, 232 Teder-Sälejärvi, Wolfgang A., 257–271 Temporal frequency, magnetoencephalographic studies, 98–101 Temporal regions, cross-function studies compared blocked paradigms, 55, 57–59 event-related paradigms, 56, 59–62 results, 50, 53 Temporal resolution, overview, 421–424 Tendolkar, I., 181 Ten-twenty electrode system, electrode sites, 381–383 ter Keurs, M., 324 Tervaniemi, Mari, 343–352 Tesche, C. D., 114, 118 Thermocoagulation, 360 Theta dynamics, executive function action regulation mechanisms for error-related negativity, 202–205 limbic theta, 209 theta rhythm amplitude modulation, 211–213 corticolimbic integration, 208–209 phase reset, 209–211 Thomas, C., 325 Three-spheres model, 18 Tononi, G., 115 Tootell, R. B., 254 Top-down selection, visual selective attention modulation, 280 Topographic mapping, see also Electroencephalogram; Event-related potentials; Neuronal recordings; specific cognitive functions analytical methods, 403–418 applications, 417–418 components, 408–418 extraction, 412–414 physiological interpretation, 416–417 spatial components analysis, 414–415 overview, 403–408 rational, 404–408 description, 29, 390–393 electrodes, 379–383 caps, 380–381 impedance, 381 placement, 380 sites, 381–383 types, 380 evoked visual information processing study, 75–78, 81–82, 290 isoline maps, 384, 390–392 limitations, 393–395 primary language acquisition effects on cerebral organization, 236–238 stationary maps, 390 visual attention to object features, 290 Touge, 313 Tournoux, P., 359 Toxins, lesion relationship, 364 Triantafyllou, N. I., 327, 329 Trott, C., 174 Tsivilis, D., 181, 182 Tsuchiya, H., 316 Tucker, Don M., 197–217 Tulving, E., 174 Tumors, neurological symptoms, 368–369 U Ungerleider, L. G., 102, 279 Uusitalo, M. A., 112, 125 Uutela, K., 120, 129 V Vanderwolf, C. H., 211 van Dijk, J. G., 327 Van Essen, D. C., 94, 112 Vanni, S., 98, 112, 114, 120, 129 Vascular dementia, event-related potential studies, 322 Ventral processing stream, magnetoencephalographic studies, 102–109 Verleger, Rolf, 309–332, 367–369, 417 Vertex potentials description, 33 steady-state visual evoked potentials for attention, 264 Vidal, F., 200 Vieregge, P., 316, 321 INDEX 435 Visual information processing attention, see Attention color vision magnetoencephalographic studies, 104–109 processing, 298–301 deprivation effects on development, 228–230 event-related fields, 35–36 evoked potential studies higher cognitive processes, 79–83 multichannel recording, 75–78 neural plasticity, 79–83 neurology applications, 88 neurophysiological bases, 72–75, 88 ophthalmology applications, 88 overview, 71–72, 88–89 perceptual learning, 79–83 selection negativity, 30, 289, 294, 300 steady-state visual evoked potentials, 78–79, 257–271 cognitive process relationship, 258 contrast response, 268–270 magno cellular pathways, 265–268 overview, 257–258, 270–271 parvocellular pathways, 265–268 phase effects, 262–265 spatial attention, 258–262 stereoscopic perception, 83–88 stimulation frequency influence, 78–79 topographic mapping, 75–78, 81–82, 290 magnetoencephalographic studies, 93–130 basic visual functions, 98–113 color vision, 104–109 contrast threshold, 98–101 cue invariance, 109 dorsal processing stream, 102–104, 109–113 motion vision, 109–113 spatial frequency, 98–101 spatial vision, 102–104, 109–113 temporal frequency, 98–101 ventral processing stream, 102–109 central fixation issues, 128–129 higher order processes mental imagery, 120–122 selective attention, 118–120, 128–129 working memory, 122–127 multimodality imaging, 129–130 oscillatory behavior, 113–118 induced activity, 116–118 periodic stimulation, 114–116 overview, 93–95 retinotopy identification, 95–98 source modeling issues, 127–128 visual area identification, 95–98 object feature selection, 273–301 anterior attentional system, 273–279 color, 298–301 feature-directed attention, 285–291 features conjunction, 292–298 frequency-based attentional selection, 291–292 neural systems, 274–280 object perception, 292–298 orientation-directed attention, 288–291 overview, 273–274, 301 posterior attentional system, 273–274, 279–280 primary visual area modulation, 280–285 space-based attentional selection, 291–292 spatial frequency-directed attention, 286–288, 292–298 oscillatory behaviors, magnetoencephalographic studies, 113–118 induced activity, 116–118 periodic stimulation, 114–116 spatial frequency magnetoencephalographic studies, 98–101 of a visual stimulus, 286–288, 292–298 visual stream development age effects, 226–228 atypical early experience effects, 225–226 word formation system, 32 Vogels, R., 290 Voltage fluctuations, see Eventrelated potentials Voltammetry fast cyclic voltammetry, 365–366 overview, 365 Volume conductor, 17 Volunteer recruitment, for brain wave recording studies, 398–400 Vomberg, H. E., 87 Von Helmholtz, Herman, 245 Vuilleumier, P., 326 W Wagner, A. D., 171 Wang, L., 122, 123 Ward, A. A., 198 Wascher, E., 314 Wernicke, 117 Wernicke’s aphasia, event-related potential studies, 323–325 Westphal, K. P., 320 Wilding, Edward L., 169–191 Williamson, S. J., 93, 99, 114, 125 Williams syndrome, face processing effects, 233 Wilson, G. F., 258 Wilson Card Sorting Task, 122–123 Winkler, I., 351 Woldorff, M. G., 35, 280 Wood, C. C., 417 Working memory, see also Episodic memory; Long-term memory activation stimulus, 44–53 cognitive regions, 63 language comprehension studies, 155–158 magnetoencephalographic studies, 122–127 Wright, M. J., 314 Wylie, G., 189 Y Yamaguchi, S., 318, 322 Z Zani, Alberto, 3–11, 13–36, 80, 273–301, 359–366, 373–377, 379–400, 421–425 Zeki, S. M., 104 436 INDEX