Nanotechnologies for the Life Sciences

Nanotechnologies for the Life Sciences

  • نوع فایل : کتاب
  • زبان : انگلیسی
  • مؤلف : Kumar, Challa S. S. R.
  • ناشر : Vch Verlagsgesellschaft Mbh
  • چاپ و سال / کشور: 2011
  • شابک / ISBN : 9783527331147

Description

Preface XIII List of Contributors XVII 1 Biofunctionalization of Fluorescent Nanoparticles 1 Michael J. Murcia and Christoph A. Naumann 1.1 Introduction 1 1.2 Fluorescent Nanoparticle Probes 2 1.2.1 Dye-doped Nanoparticles 3 1.2.2 Quantum Dots (QDs) 5 1.2.3 Metal Nanoparticles 7 1.2.4 Hybrid Architectures Involving Fluorescent Nanoprobes 9 1.2.4.1 Metal–Dye 9 1.2.4.2 Dye-doped Silica Shells 9 1.2.4.3 Quantum Dot-containing Microspheres 10 1.3 Bioconjugation of Fluorescent Nanoparticles 11 1.3.1 General Considerations 11 1.3.1.1 Overview 11 1.3.1.2 Common Coupling Reactions 13 1.3.2 Bioconjugation of Polymeric Nanoparticles 13 1.3.2.1 Noncovalent Approaches 13 1.3.2.2 Covalent Approaches 15 1.3.3 Bioconjugation of Quantum Dots 15 1.3.3.1 Noncovalent Approaches 16 1.3.3.2 Covalent Approaches 16 1.3.4 Bioconjugation of Metallic Nanoprobes 16 1.3.4.1 Noncovalent Approaches 17 1.3.4.2 Covalent Approaches 17 1.4 Design of Biocompatible Coatings 17 1.4.1 General Considerations 17 1.4.1.1 Overview 17 1.4.1.2 Colloidal Stability 18 1.4.1.3 Biocompatible Surfaces 19 Nanotechnologies for the Life Sciences Vol. 1 Biofunctionalization of Nanomaterials. Edited by Challa S. S. R. Kumar Copyright 8 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-31381-8 V 1.4.1.4 Cytotoxicity 20 1.4.2 Nanoparticle-stabilizing Coatings 21 1.4.3 Low Cytotoxicity Coatings 23 1.5 Applications 23 1.5.1 Biosensing 24 1.5.1.1 Polymeric Sensors 25 1.5.1.2 Quantum Dot Sensors 25 1.5.1.3 Metallic Sensors 26 1.5.2 Fluorescent Nanoparticles as Labels in Biological Imaging 27 1.5.2.1 Dye-doped Nanoparticles 27 1.5.2.2 Quantum Dots 27 References 29 2 Biofunctionalization of Carbon Nanotubes 41 Elena Bekyarova, Robert C. Haddon, and Vladimir Parpura 2.1 Introduction 41 2.2 Carbon Nanotubes – Types, Structures and Properties 42 2.3 Synthesis of Carbon Nanotubes 43 2.4 Approaches to Aqueous Solubilization of Carbon Nanotubes 47 2.4.1 Chemical Modifications 47 2.4.2 Use of Water-compatible Surfactants 47 2.4.3 Functionalization with Water-soluble Polymers 48 2.4.4 Interaction and Functionalization with Biological Molecules 49 2.4.4.1 Noncovalent Biofunctionalization 50 2.4.4.2 Covalent Biofunctionalization 52 2.5 Applications of Biofunctionalized Carbon Nanotubes 54 2.5.1 Assembly of Electronic Devices 54 2.5.2 Biosensing 58 2.5.3 Substrates for Neuronal Growth 63 2.6 Concluding Remarks 65 Acknowledgments 65 References 65 3 Biofunctionalization of Magnetic Nanoparticles 72 Yong Gao 3.1 Introduction 72 3.2 Functionalization of Magnetic Nanoparticles for In Vitro Protein/Cell Separation 74 3.3 Functionalization of Magnetic Nanoparticles for Biochemical/Chemical Synthesis of Therapeutic Drugs and Their Intermediates 80 3.4 Functionalization of Magnetic Nanoparticles for In Vivo Bio-imaging, Drug Targeting and Tumor Hyperthermia Treatments 82 3.4.1 MR Imaging 83 3.4.2 Targeted Drug Delivery 86 3.4.3 Magnetic Hyperthermia 87 VI Contents 3.5 Conclusions 88 Acknowledgments 89 References 89 4 Biofunctionalization of Gold Nanoparticles 99 Ming Zheng and Xueying Huang 4.1 Introduction 99 4.2 General Synthetic Routes 99 4.2.1 Direct Synthesis of Ligand-protected Au NPs 100 4.2.1.1 Strongly Ionic Ligand-protected Au NPs 102 4.2.1.2 Weakly Ionic Ligand-protected Au NPs 102 4.2.1.3 Au NPs Protected with Neutral Ligands 102 4.2.2 Ligand Exchange Reaction 103 4.3 Preparative-scale Synthesis and Solution-phase Characterization of DNAdirected Nanoparticle Assemblies 103 4.4 Bifunctional Proteins for Programmable Assembly of Nanoparticles 111 4.5 Strategies for Eliminating Nonspecific Interactions and Enabling Specific Binding with Biomolecules 113 4.6 Biological Applications 118 4.6.1 Nucleic Acids 118 4.6.2 Proteins 118 4.6.3 Cells and Virus 119 Acknowledgments 120 References 120 5 Biofunctionalization of Phospholipid Polymer Nanoparticles 125 Junji Watanabe, Jongwon Park, Tomomi Ito, Madoka Takai, and Kazuhiko Ishihara 5.1 Introduction 125 5.2 Nanofabrication for Biomedical Applications 126 5.2.1 Nano-scaled Processing 126 5.2.2 Key Materials for Nanofabrication 127 5.3 Design of Bioconjugate Nanoparticles 129 5.3.1 Bioconjugate Phospholipid Polymer 129 5.3.2 Solution Properties by Fluorescence Probe 129 5.3.3 Bioconjugate Nanoparticles 131 5.3.4 Surface Elemental Analysis by X-ray Photoelectron Spectroscopy 132 5.3.5 Surface z-Potential on Nanoparticles 132 5.3.6 Particle Size by Dynamic Light Scattering and Morphology by Scanning Electron Microscope 134 5.3.7 Determination of Active Ester Groups on Nanoparticles 135 5.4 Biofunction on Nanoparticles 137 5.4.1 Design of Sequential Enzymatic Reaction 137 5.4.2 Amplified Signal on Nanoparticles 138 Contents VII 5.5 Application for Molecular Diagnosis 139 5.5.1 Example of C-reactive Protein Detection Using Nanoparticles 139 5.5.2 High-performance Diagnosis in Serum 143 5.6 Conclusions 145 Acknowledgments 145 References 145 6 Biofunctionalization of Metallic Nanoparticles and Microarrays for Biomolecular Detection 150 Grit Festag, Uwe Klenz, Thomas Henkel, Andrea Csa´ki, and Wolfgang Fritzsche 6.1 Introduction 150 6.1.1 Applications 151 6.1.2 Array Fabrication 151 6.1.3 Detection Methods 153 6.1.3.1 Optical Absorbance 153 6.1.3.2 SPR Imaging 155 6.1.3.3 Raman Scattering 155 6.1.3.4 Electrical Detection 156 6.1.3.5 Electrochemical Detection 156 6.1.3.6 Gravimetric 158 6.2 Nanoparticles and their Biofunctionalization 158 6.2.1 Types of Nanoparticles used for Biomolecular Detection 159 6.2.1.1 Metal Nanoparticles 159 6.2.1.2 Core/Shell Particles 159 6.2.1.3 Magnetic Nanoparticles 160 6.2.1.4 Quantum Dots 160 6.2.2 Synthesis of Gold (Silver) Nanoparticles 161 6.2.3 Biofunctionalization 161 6.2.3.1 Modification of Gold Nanoparticles with Oligonucleotides/DNA 162 6.2.3.2 Modification of Gold Nanoparticles with Proteins 165 6.2.3.3 Biofunctionalization of other Metal Nanoparticles 167 6.2.4 Biological Applications of Gold Nanoparticles 167 6.3 Substrates and their Biofunctionalization 168 6.3.1 Molecular Thin Films 169 6.3.1.1 Self-assembly Monolayers 169 6.3.1.2 Optimization of Gold Nanoparticle-based Microarrays for DNA Detection 171 6.3.2 Nanoporous Gels 172 6.4 Outlook 175 References 176 7 Conjugation of Nanomaterials with Proteins 183 Mohammed J. Meziani, Yi Lin, and Ya-Ping Sun 7.1 Introduction 183 7.2 Coupling of Inorganic Nanoparticles with Proteins 184 VIII Contents 7.2.1 Chemical Functionalization Methods 184 7.2.2 Protein-assisted Assemblies of Inorganic Nanoparticles 188 7.2.2.1 Crosslinking Route through Protein Recognition 188 7.2.2.2 Template-directed Approach 191 7.2.3 Supercritical Fluid Methods 195 7.2.3.1 BSA-conjugated Silver Nanoparticles 196 7.2.3.2 BSA-conjugated Semiconductor Nanoparticles 197 7.2.3.3 Assembly and Disassembly of Nanoparticles through Protein Isomeric Conversion 202 7.3 Coupling of Carbon Nanotubes and Proteins 204 7.3.1 Non-specific Adsorption 206 7.3.2 Specific Conjugation and Biorecognition 211 7.4 Conclusions and Perspectives 221 Acknowledgment 221 References 222 8 Stabilization and Functionalization of Metallic Nanoparticles: the Peptide Route 235 Raphae¨l Le´vy and R. Christopher Doty 8.1 Introduction 235 8.2 Metallic Nanoparticles – An Overview 236 8.2.1 Metallic Nanoparticles – Preparation 236 8.2.2 Metallic Nanoparticles – Optical Properties 238 8.2.3 Metallic Nanoparticles – Applications 242 8.3 Stabilization and Functionalization of Metallic Nanoparticles – The Peptide Route 248 8.3.1 Peptides, Proteins and Nanoscale Science 248 8.3.2 Peptide Toolbox for Bionanotechnology 249 8.3.3 Peptides as Capping Ligands 250 8.3.3.1 Interactions of Amino Acids with Noble Metals 250 8.3.3.2 Peptides as Reducing Agent and Template in Metallic Nanoparticle Synthesis 250 8.3.3.3 Rational Design of a Peptide Capping Ligands for Gold Nanoparticles: CALNN 251 8.3.3.4 Combinatorial Exploration of Peptides as Capping Ligands: the CALNN Family 252 8.3.3.5 Peptide-capped Silver Nanoparticles 252 8.3.3.6 Peptides as Capping Ligands for Fluorescent and Magnetic Nanoparticles 252 8.3.4 Peptide Extensions to Introduce Functionalities 253 8.3.4.1 Biotin and Strep-tag II 253 8.3.4.2 Peptide-DNA Hybrids 254 8.3.4.3 His-tag and Nickel Nitrilotriacetic Acid (Ni-NTA) 254 8.3.5 Chromatography of Peptide-capped Nanoparticles 255 8.3.5.1 Size-exclusion Chromatography 256 Contents IX 8.3.5.2 Affinity Chromatography 256 8.3.6 Recognition of Materials 256 8.3.7 Peptide-based Linkers 258 8.3.7.1 A Peptide-Peptide Linker Based on Leucine-zipper Sequences 259 8.3.7.2 A Peptide-DNA Linker Based on Metallopeptides 259 8.3.7.3 A Peptide-Texas Red Linker Obtained by Phage Display 259 8.3.8 Biologically Active Peptides 259 8.3.9 Self-assembling Peptides 260 8.3.9.1 Fibers and Nanotubes 260 8.3.9.2 Peptide-based Amphiphiles 262 8.4 Concluding Remarks 262 References 263 9 Folate-linked Lipid-based Nanoparticles for Tumor-targeted Gene Therapy 270 Yoshiyuki Hattori and Yoshie Maitani 9.1 Introduction 270 9.2 Gene Delivery and Expression System 270 9.3 Nanoparticles for Gene Delivery System 271 9.4 Folate-linked Vectors 272 9.4.1 Folate Receptors 273 9.4.2 Folate Receptor-targeting Liposomes 273 9.5 Folate-linked Lipid-based Nanoparticles 277 9.5.1 Formulations 277 9.5.2 Nanoplex and Transfection Activity In Vitro 280 9.5.3 Selectivity of Folate-linked Nanoparticle 282 9.5.4 Transfection Activity In Vivo 285 9.6 Application of Suicide Gene Therapy 287 9.7 Conclusions 291 List of Abbreviations 292 References 293 10 Magnetic Core Conducting Polymer Shell Nanocomposites for DNA Attachment and Hybridization 299 Jean-Paul Lellouche 10.1 Introduction 299 10.2 Chemical Design of DPyr- and DCbz-containing Monomers: Introduction of Molecular Diversity 301 10.3 Synthetic Approaches for Mono- and Dicarboxylated DPyr-/DCbz-based Monomers 302 10.4 Oxidative Polymerization of DPyr-/DCbz-based Monomers around Magnetite Nanoparticles 305 10.4.1 General Considerations 305 10.4.2 Characterization of Magnetically Responsive PolyDPyr- and PolyDCbz- Magnetite Nanocomposites 307 X Contents 10.5 Development of a DNA-based Biological System for Nanocomposite Parallel Screening 311 10.5.1 Covalent Attachment of an NH2-5O-modified 20-mer DNA Probe onto NCs towards DNA-Biofunctionalized NCs. Covalent Amide Bond Chemistry and Resulting NC-Supported DNA Hybridizations 313 10.5.2 Attachment of a Biotin-5O-modified 20-mer DNA Probe to DNAbiofunctionalized NCs. Quasi-covalent Linkage Using the Streptavidin– Biotin System and the Resulting NC-supported DNA Hybridizations 318 10.5.3 Storage: Medium-term Stability of Some PolyDPyr-/PolyDCbz-Magnetite NCs 320 10.6 Typical Experimental Procedures for NC Fabrication and NC-Supported DNA Hybridizations 320 10.6.1 Typical Optimized Procedures for NC Fabrication Including Magnetite Preparation 320 10.6.1.1 Magnetite Preparation Using the Oxidative Hydrolysis of Iron(II) Sulfate in an Alkaline KOH Medium 320 10.6.1.2 PolyDPyr-Magnetite Nanocomposites 322 10.6.1.3 PolyDCbz-Magnetite Nanocomposites 322 10.6.2 Covalent Attachment of an Aminated NH2-5O-modified DNA Probe. Hybridization Experiments onto PolyDPyr-/PolyDCbz-Magnetite NCs. Typical Experimental Procedures 323 10.6.2.1 Specific Reagents, Buffers and Washing/Assay Solutions 324 10.6.3 Quasi-covalent Attachment of a Biotin-5O-modified DNA Probe and DNA Hybridization Experiments onto Streptavidin-modified PolyDPyr-(5a)/PolyDCbz(5b)-magnetite NCs. Typical Experimental Procedures 324 10.7 Conclusions and Research Outlook 325 Acknowledgments 325 References 326 11 Gelatin Nanoparticles and Their Biofunctionalization 330 Sushma Kommareddy, Dinesh B. Shenoy, and Mansoor M. Amiji 11.1 Introduction 330 11.2 Gelatin and Gelatin Derivatives 331 11.2.1 Gelatin 331 11.2.2 Chemical Modification of Gelatin 332 11.2.2.1 PEGylation 333 11.2.2.2 Thiolation 335 11.2.2.3 Other Conjugates of Gelatin 335 11.3 Nanoparticulate Carriers of Gelatin and Gelatin Derivatives 337 11.3.1 Desolvation 337 11.3.1.1 Desolvation Using Ethanol 338 11.3.1.2 Two-step Desolvation 338 11.3.2 Coacervation 338 Contents XI 11.3.3 Nano-encapsulation by Water-in-oil Emulsion Method 339 11.4 Characterization of Gelatin and Modified Gelatin Nanoparticles 340 11.5 Loading and Release of Payload from Gelatin Nanoparticles 342 11.6 Biocompatibility Studies 343 11.7 Applications of Gelatin and Modified Gelatin Nanoparticles 344 11.8 Conclusions 347 References 348 Index 353 XII Contents
اگر شما نسبت به این اثر یا عنوان محق هستید، لطفا از طریق "بخش تماس با ما" با ما تماس بگیرید و برای اطلاعات بیشتر، صفحه قوانین و مقررات را مطالعه نمایید.

دیدگاه کاربران


لطفا در این قسمت فقط نظر شخصی در مورد این عنوان را وارد نمایید و در صورتیکه مشکلی با دانلود یا استفاده از این فایل دارید در صفحه کاربری تیکت ثبت کنید.

بارگزاری