کنترل کوره انفجار با استفاده از درجه حرارت های مایع و ویسکوزیته پسماند ها با محاسبات تعادل فازی Blast Furnace Control using Slag Viscosities and Liquidus Temperatures with Phase Equilibria Calculations
- نوع فایل : کتاب
- زبان : فارسی
- چاپ و سال / کشور: 2011
توضیحات
رشته های مرتبط: مهندسی مکانیک، مهندسی مواد، شیمی و فیزیک، فیزیک کاربردی، فیزیک هسته ای، مکانیک سیالات و شیمی معدنی
خواص فیزیوشیمیایی پسماند های حرارتی نظیر ویسکوزیته از متغیرهای فرایندی مهم فرایند های کوره های حرارت دهی و اهمیت آن هنگام مطالعه فرایند و کاربرد دانش در مدیریت و بهینه سازی می باشند. ویسکوزیته پسماند یک خاصیت انتقالی است که با سینتیک واکنش و درجه کاهش پسماند نهایی ارتباط دارد. همچنین ویسکوزیته تعیین کننده کارایی تفکیک فلز –پسماند و به دنبال آن عملکرد فلز و ظرفیت ناخالصی می باشد. عملا، ویسکوزیته پسماند شاخص سهولت خروج پسماند از کوره بوده و بنابراین با نیاز انرژی و مزیت فرایند ارتباط دارد. توانایی پیش بینی ویسکوزیته پسماند و درجه حرارت مایع پتانسیل بهینه سازی آنالیزها و کنترل تصمیم گیری کوره های حرارت دهی با جایگزینی استفاده از قوانین سر انگشتی با ترکیبات پسماندی دارد. در گذشته به منظور اندازه گیری و مدلسازی ویسکوزیته های سیستم های مختلف پسماند های حرارتی، تلاش هایی انجام پذیرفته است که نتایج آن را می توان در بسیاری از مطالعات استفاده و مشاهده کرد. برخی از این مدل ها اثر اجزاء متفاوت بسیار مناسب بوده و اغلب اثر ترکیب پسماند مایع و رسوب جامدات در دجه حرارت های پایین را در نظر نمی گیرد.. در سیستم های رایج پسماندها، افزایش خاصیت بازی و قلیایی نه تنها منجر به کاهش ویسکوزیته مایع و شکستن پیوند سیلیکات ها بلکه باعث افزایش احتمال رسوب جامدات و به موجب آن افزایش ویسکوزیته می شوند. محاسبات تعادل فازی ابتدا به منظور تعیین درجه حرارت های مایع و سپس به منظور براورد مقدار جامدات رسوب یافته به کار می روند. برای پسماند های چند فازی، مقدار پیش بینی شده جامدات برای تعدیل ویسکوزیته برائرد شده بوسیله مدل ویسکوزیته مایع مورد استفاده قرار می گیرند. به منظور بهینه سازی فرایند با استفاده از مدل پیشنهادی، نخستین گام استفاده از مدل های داده های تاریخی جهت ایجاد معیار عملکرد و تعیین اهداف می باشد. در این مقاله، هدف اصلی ایجاد مدل های ویسکوزیته کارامد و درجه حرارت مایع و استفاده از برخی روش ها برای تشریح چگونگی استفاده از آنها برای یک کوره حرارت دهی و پایش عملکرد و بهینه سازی می باشد. مواد و روش ها: بررسی ویسکوزیته پسماند و درجه حرارت های مایع فلز مذاب را می توان به صورت یک سیال نیوتونی با ویسکوزیته برشی مستقل از سرعت برشی در نظر گرفت که به همین دلیل به آن ویسکوزیته دینامیک می گویند. ویسکوزیته تا حد فراوانی تحت تاثیر پیوند و درجه پلی مریزاسیون بوده و آلومینویم و سیلیسیم اکسید نقش زیادی در ویسکوزیته های بالاتر با درجه بالای پیوند های کوالان دارند. بر عکس، مونواکسید هایی نظیر منیزیم و کلسیم اکسید رفتار یونی از خود نشان می دهند که منجر به تخریب زنجیره های سیلیکات و کاهش ویسکوزیته خواهند شد. این مباحث برای سیستم فاز پسماند مایع و سیستم چند فازی نیز صادق است که در آن افزایش مونواکسید منجر به افزایش فعالیت فازهای جامد و رسوب جامد خواهد شد که به نوبه خود کارایی ویسکوزیته را بالا می برد. در این حجا لازم به ذکر است که در برخی عملیات که امکان تغییر ترکیب پسماند وجود دارد، تغییر در ترکیب دارای اثرات متناقضی می باشد. به عنوان مثال، دست یابی به ویسکوزیته پایین تر در قلیاییت بالاتر ارتباط تنگاتنگی با اثر نامطلوب افزایش درجه حرارت مایع دارد. غ=علاوه بر اثرات بر خواص فیزیوشیمیایی، خاصیت قلیایی پسماندها بر توانایی خروج گوگرد و سولفور و مقدار سیلیسسیم اثر گذاشته و این در حالی است که خاصیت بالای بازی باعث افزایش میزان گوگرد در پسماند و کاهش مقدار سیلیسیم در فلز می شود. سیستم متالورژی: مدل های ایجاد شده بر اساس محاسبات تعادل فازی با استفاده از مجموعه داده های ترمودینامیک می باشند که ناحیه عملیاتی ترکیب و درجه حرارت های پسماند های کوره های حرارت دهی را نیز در نظر می گیرند. مدل های ایجاد شده درجه حرارت های ویسکوزییته و مایع کاملا کالیبره شده و برای نوع گکوره های حرارت دهی بهینه سازی شدند. این پسماند های حرارتی غالبا شامل سیلیسیم، آلومینویوم، منیزیم و کلسیم اکسید با مقادیر اندک FeO, MnO, TiO2, Na2O,K2O, و سولفور بودند که بر خواص فیزیو شیمایی اثر قابل توجهی اعمال می کنند. درجه حرارت پسماند ها نیز بر تعادل فازی و به دنبال آن خواص فیزیوشیمایی اثر می گذاارند. جدول ۱ دامنه ها و مقادیر ترکیب شیمیایی و درجه حرارت کوره حرارت دهی را نشان می دهد. مقادبیر درجه حرارت پسماندی براورد هایی بر اساس این فرض می باشند که این نوع پسماند ها تقریبا درون کوره نسبت به درجه حرارت فلز ۱۰۰ درصد داغ تر می باشند. این مقادیر در بین کوره ها و نیروگاه های مختلف به دلیل واریانس در مواد تغذیه کننده بسیار متغیر می باشند.
خواص فیزیوشیمیایی پسماند های حرارتی نظیر ویسکوزیته از متغیرهای فرایندی مهم فرایند های کوره های حرارت دهی و اهمیت آن هنگام مطالعه فرایند و کاربرد دانش در مدیریت و بهینه سازی می باشند. ویسکوزیته پسماند یک خاصیت انتقالی است که با سینتیک واکنش و درجه کاهش پسماند نهایی ارتباط دارد. همچنین ویسکوزیته تعیین کننده کارایی تفکیک فلز –پسماند و به دنبال آن عملکرد فلز و ظرفیت ناخالصی می باشد. عملا، ویسکوزیته پسماند شاخص سهولت خروج پسماند از کوره بوده و بنابراین با نیاز انرژی و مزیت فرایند ارتباط دارد. توانایی پیش بینی ویسکوزیته پسماند و درجه حرارت مایع پتانسیل بهینه سازی آنالیزها و کنترل تصمیم گیری کوره های حرارت دهی با جایگزینی استفاده از قوانین سر انگشتی با ترکیبات پسماندی دارد. در گذشته به منظور اندازه گیری و مدلسازی ویسکوزیته های سیستم های مختلف پسماند های حرارتی، تلاش هایی انجام پذیرفته است که نتایج آن را می توان در بسیاری از مطالعات استفاده و مشاهده کرد. برخی از این مدل ها اثر اجزاء متفاوت بسیار مناسب بوده و اغلب اثر ترکیب پسماند مایع و رسوب جامدات در دجه حرارت های پایین را در نظر نمی گیرد.. در سیستم های رایج پسماندها، افزایش خاصیت بازی و قلیایی نه تنها منجر به کاهش ویسکوزیته مایع و شکستن پیوند سیلیکات ها بلکه باعث افزایش احتمال رسوب جامدات و به موجب آن افزایش ویسکوزیته می شوند. محاسبات تعادل فازی ابتدا به منظور تعیین درجه حرارت های مایع و سپس به منظور براورد مقدار جامدات رسوب یافته به کار می روند. برای پسماند های چند فازی، مقدار پیش بینی شده جامدات برای تعدیل ویسکوزیته برائرد شده بوسیله مدل ویسکوزیته مایع مورد استفاده قرار می گیرند. به منظور بهینه سازی فرایند با استفاده از مدل پیشنهادی، نخستین گام استفاده از مدل های داده های تاریخی جهت ایجاد معیار عملکرد و تعیین اهداف می باشد. در این مقاله، هدف اصلی ایجاد مدل های ویسکوزیته کارامد و درجه حرارت مایع و استفاده از برخی روش ها برای تشریح چگونگی استفاده از آنها برای یک کوره حرارت دهی و پایش عملکرد و بهینه سازی می باشد. مواد و روش ها: بررسی ویسکوزیته پسماند و درجه حرارت های مایع فلز مذاب را می توان به صورت یک سیال نیوتونی با ویسکوزیته برشی مستقل از سرعت برشی در نظر گرفت که به همین دلیل به آن ویسکوزیته دینامیک می گویند. ویسکوزیته تا حد فراوانی تحت تاثیر پیوند و درجه پلی مریزاسیون بوده و آلومینویم و سیلیسیم اکسید نقش زیادی در ویسکوزیته های بالاتر با درجه بالای پیوند های کوالان دارند. بر عکس، مونواکسید هایی نظیر منیزیم و کلسیم اکسید رفتار یونی از خود نشان می دهند که منجر به تخریب زنجیره های سیلیکات و کاهش ویسکوزیته خواهند شد. این مباحث برای سیستم فاز پسماند مایع و سیستم چند فازی نیز صادق است که در آن افزایش مونواکسید منجر به افزایش فعالیت فازهای جامد و رسوب جامد خواهد شد که به نوبه خود کارایی ویسکوزیته را بالا می برد. در این حجا لازم به ذکر است که در برخی عملیات که امکان تغییر ترکیب پسماند وجود دارد، تغییر در ترکیب دارای اثرات متناقضی می باشد. به عنوان مثال، دست یابی به ویسکوزیته پایین تر در قلیاییت بالاتر ارتباط تنگاتنگی با اثر نامطلوب افزایش درجه حرارت مایع دارد. غ=علاوه بر اثرات بر خواص فیزیوشیمیایی، خاصیت قلیایی پسماندها بر توانایی خروج گوگرد و سولفور و مقدار سیلیسسیم اثر گذاشته و این در حالی است که خاصیت بالای بازی باعث افزایش میزان گوگرد در پسماند و کاهش مقدار سیلیسیم در فلز می شود. سیستم متالورژی: مدل های ایجاد شده بر اساس محاسبات تعادل فازی با استفاده از مجموعه داده های ترمودینامیک می باشند که ناحیه عملیاتی ترکیب و درجه حرارت های پسماند های کوره های حرارت دهی را نیز در نظر می گیرند. مدل های ایجاد شده درجه حرارت های ویسکوزییته و مایع کاملا کالیبره شده و برای نوع گکوره های حرارت دهی بهینه سازی شدند. این پسماند های حرارتی غالبا شامل سیلیسیم، آلومینویوم، منیزیم و کلسیم اکسید با مقادیر اندک FeO, MnO, TiO2, Na2O,K2O, و سولفور بودند که بر خواص فیزیو شیمایی اثر قابل توجهی اعمال می کنند. درجه حرارت پسماند ها نیز بر تعادل فازی و به دنبال آن خواص فیزیوشیمایی اثر می گذاارند. جدول ۱ دامنه ها و مقادیر ترکیب شیمیایی و درجه حرارت کوره حرارت دهی را نشان می دهد. مقادبیر درجه حرارت پسماندی براورد هایی بر اساس این فرض می باشند که این نوع پسماند ها تقریبا درون کوره نسبت به درجه حرارت فلز ۱۰۰ درصد داغ تر می باشند. این مقادیر در بین کوره ها و نیروگاه های مختلف به دلیل واریانس در مواد تغذیه کننده بسیار متغیر می باشند.
Description
Physicochemical properties of slag, such as viscosity, are important process variables of the blast furnace process, and of significance when studying the process and applying the knowledge in management and optimization. Slag viscosity is a transport property that relates to the reaction kinetics and the degree of reduction of the final slag1. Slag viscosity also determines the slag– metal separation efficiency, and subsequently the metal yield and impurity removal capacity. In operation, the slag viscosity is indicative of the ease with which slag could be tapped from the furnace, and therefore relates to the energy requirement and profitability of the process. The ability to predict the slag viscosity and liquidus temperature has the potential to optimize the analysis and decision-making control of blast furnaces, replacing the use of rules of thumb pertaining to slag compositions. Efforts have been made in the past to measure and model viscosities for different slag systems, of which the results of many can be found in published literature1,2. Some of these models correlate the effect of the different components very well, 310 but often do not consider the effect of the adjusted liquid slag composition, and precipitation of solids at lower temperatures. In the typical slag system of interest, an increase in basicity not only leads to a lower liquid viscosity due to broken silicate bonds, but also increases the likelihood of solids precipitation, thereby increasing the viscosity. Phase equilibrium calculations are used to firstly determine the liquidus temperature, and then to estimate the amount (if any) of precipitated solids. For multiphase slags, the predicted amount of solids is to be used to adjust the viscosity predicted by the liquid viscosity model. To optimize the process using the developed model, the first step would be to apply the models to historical data to generate a performance baseline and determine targets for improvement. In this work, the aim was to develop liquidus temperature and effective-viscosity models and application methodologies, to illustrate how they could be used for a blast furnace, to monitor performance and drive optimization.